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Abstract

The physical model considered here is a horizontal layer of fluid heated below and cold above with a conducting

body placed at the center of the layer. The body has dimensionless thermal conductivities of 0.1, 1 and 50. Two-dimen-

sional solution for unsteady natural convection is obtained using an accurate and efficient Chebyshev spectral method-

ology for different Rayleigh numbers. Multi-domain technique is used to handle a square-shaped conducting body. The

results for the case of a conducting body are also compared to those of adiabatic and neutral isothermal bodies. When

the dimensionless thermal conductivity is 0.1, a pattern of fluid flow and isotherms and the corresponding surface- and

time-averaged Nusselt number are almost the same as the case of an adiabatic body. When the dimensionless thermal

conductivity is 50, a pattern of flow and isotherm and the corresponding surface- and time-averaged Nusselt number are

similar to those of neutral isothermal body. The results for the case of dimensionless thermal conductivity of unity are

also compared to those of pure natural convection.

� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Rayleigh–Bénard convection in a horizontal layer of

fluid confined between two parallel plates, with the bot-

tom plate heated and the top one cooled, has been well

studied for over a century. It has been well established

that for the isothermal boundary condition the horizon-

tal layer of fluid becomes unstable above a Rayleigh

number of 1708 and convective motion sets in the form

of steady convective rolls of aspect ratio (width to

height) of about 2 [1]. With increasing Rayleigh number
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the flow undergoes a sequence of instabilities and even-

tually transitions to a turbulent state above a Rayleigh

number of about 107 [2,3].

For couples of decades, there have been many re-

searches about vertical cavity with two vertical walls at

different temperatures and with adiabatic horizontal sur-

faces [4–6]. Natural convection flows in a vertical cavity

are probably the most considered configuration in the

studies of natural convection because of their relative

simplicity and practical importance. Two- and three-

dimensional numerical analysis for a vertical cavity with

and without a body at the center has been performed in

the past over a wide range of Rayleigh numbers. These

studies suggested a set of benchmark numerical results

for the two- and three-dimensional laminar and turbu-

lent flow for varying Rayleigh numbers.
ed.
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Nomenclature

g gravity

k dimensionless thermal conductivity (=ks/kf)

L length of the enclosure

n vector normal to surface

Nu local Nusselt number

Nu surface-averaged Nusselt number

hNui time- and surface-averaged Nusselt number

p dimensionless pressure

Pr Prandtl number

Ra Rayleigh number

t dimensionless time

t* dimensional time

tp period of time integration

u dimensionless velocity

u* dimensional velocity

x dimensionless coordinate vector

x� dimensional i-directional coordinate

a dimensionless thermal diffusivity (=as/af)
b thermal expansion coefficient

mf kinematic viscosity of fluid

h dimensionless temperature

Subscripts/superscripts

body body

c cold

f fluid

h hot

p period

s solid

J.R. Lee, M.Y. Ha / International Journal of Heat and Mass Transfer 48 (2005) 3308–3318 3309
The geometries that arise in engineering applications,

however, are more complicated than a simple horizontal

or vertical cavity. Considerable research has been per-

formed with various obstacles placed inside the enclo-

sure in the form of partitions, partial baffles and

square bodies. These researches revealed that these kinds

of obstructions could change the characteristics of flow

and heat transfer in the horizontal and vertical

enclosures.

House et al. [7] numerically examined the effect of a

centered, squared heat-conducting body on the steady

natural convection in a vertical square enclosure. They

found that heat transfer across the enclosure may be en-

hanced or decreased by a body with a thermal conduc-

tivity ratio less than or larger than unity. Oh et al. [8]

and Ha et al. [9] investigated the steady and unsteady

natural convection processes when a temperature differ-

ence exists across the vertical enclosure and, at the same

time, a conducting body generates heat within the verti-

cal enclosure. They investigated the effects of Rayleigh

numbers and temperature difference ratios on the fluid

flow and heat transfer in the vertical enclosure. Ha

and Jung [10] conducted numerical simulation to inves-

tigate three-dimensional, steady, conjugate heat transfer

of natural convection and conduction in a vertical cubic

enclosure within which a centered, cubic, heat-conduct-

ing body generates heat.

Ha et al. [11] solved the problem of two-dimensional

and unsteady natural convection in a horizontal square

enclosure with a square body located at the center be-

tween the bottom hot and top cold walls. To see the ef-

fects of the presence of a body and its thermal boundary

conditions on natural convection between the hot and

cold walls, they considered the cases that the body main-

tains the adiabatic and isothermal thermal boundary
conditions for different Rayleigh numbers. Lee et al.

[12] studied thermal convection in a horizontal layer of

fluid heated from below and cooled from above, with

a periodic array of evenly spaced square cylinders occu-

pying the layer (whose aspect ratio is 6). They concluded

that the transition of flow from quasi-steady up to un-

steady convection depended on the presence of bodies

and aspect ratio effect of the cell.

However, there is little information about natural

convection processes when a heat-conducting body ex-

ists within a horizontal layer of fluid confined between

the bottom hot and top cold walls. In this situation,

the flow and heat transfer inside the enclosure are largely

affected by the thermal conductivity ratio between solid

body and fluid layer for different Rayleigh numbers. The

purpose of this study is to examine how the thermal con-

ductivity ratio affects the unsteady natural convection

phenomena for different Rayleigh numbers when a

heat-conducting body exists in the horizontal enclosure.

The present results are compared with pure Rayleigh–

Bénard convection and with the cases when a square

body in the enclosure is adiabatic and neutral [11], in

order to see the effect of the conducting body on the

fluid flow and heat transfer in the horizontal enclosure.
2. Numerical methodology

A schematic of the system considered in present

paper is shown in Fig 1. The system consists of a square

enclosure with sides of length L, within which another

square body with sides of length W is centered. The bot-

tom wall is kept at a constant high temperature of Th,

whereas the top wall is kept at a constant low tempera-

ture of Tc. The left and right side walls are assumed to be
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Fig. 1. A schematic of the system.

Fig. 2. Grid distribution of computational domain.
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insulated. In this study, we assume that the radiation

effects can be taken to be negligible. The fluid properties

are also assumed to be constant, except for the density in

the buoyancy term, which follows the Boussinesq

approximation. The gravitational acceleration acts in

the negative y-direction. Thus, in the present study, we

observe the fluid flow and thermal fields for the natural

convection in an enclosure with heat-generating con-

ducting body at the center.

We solve the continuity, Navier–Stokes and energy

equations in their non-dimensional forms defined as

r � u ¼ 0 ð1aÞ

ou

ot
þ u � ru ¼ �rp þ Prr2uþ RaPrhk2 ð1bÞ

ohf
ot
þ u � rhf ¼ r2hf ð1cÞ

ohs
ot
¼ ar2hs ð1dÞ

The dimensionless variables in the above equations are

defined as

t ¼ t�af
L2

; x ¼ x�

L
; u ¼ u�L

af
;

P ¼ P �L2

qfa
2
f

; h ¼ T � T c

T h � T c

; a ¼ as
af

ð2Þ

In the above equations, q, T, as and af represent the den-
sity, dimensional temperature, thermal diffusivity of

solid and fluid, respectively. The superscript * in Eq.

(2) represents the dimensional variables. ui, p, t, h and

a are the non-dimensional velocity, pressure, time, tem-

perature and thermal diffusivity. The above non-dimen-

sionalization results in two dimensionless parameters:

Pr ¼ m
af
and Ra ¼ gbL3ðT h�T cÞ

maf
where m, g and b are the kine-
matic viscosity, gravitational acceleration and volume

expansion coefficient. In the simulations to be reported

here the Prandtl number, Pr, has been taken to be 0.7

corresponding to that of air. The Rayleigh number,

Ra, is varied over the range of 103–106.

For the boundary conditions, the velocities are set to

zero for all solid walls. The temperature boundary con-

ditions and the conditions at the fluid/body interfaces

are as follows:

At x ¼ 0 and 1;
oh
ox
¼ 0

At y ¼ 0; h ¼ 1

At y ¼ 1; h ¼ 0

At fluid=body interface; hs ¼ h and
oh
on
¼ k

ohs
on

where k(=ks/kf) is a thermal conductivity ratio of con-

ducting solid body to fluid and n is a vector normal to

solid surface.

A spectral multi-domain methodology is used to per-

form the spatial discretization along the horizontal (x)

and vertical (y) directions and to consider the heat-con-

ducting square body at the center of computational do-

main [13]. In this technique the overall computational

domain is subdivided into a number of smaller rectan-

gular subdomains. Within each subdomain a local spec-

tral Chebyshev discretization is defined [13]. Fig. 2 shows

the computational geometry involving nine subdomains

in the x � y plane, with each subdomain resolved by up

to 31 · 31 points. The grid points are the Gauss–Lobatto

points corresponding to Chebyshev expansion within



Fig. 3. Temperature profiles along the y direction at different

locations of x = 1/4 and 3/4 for the coarse (31 · 31 in each

subdoamin) and fine (51 · 51 in each subdomain) grid

solutions.
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each subdomain and are therefore non-uniformly distrib-

uted. Grid independence of the solution has been tested

with additional simulations on much finer grids up to

51 · 51 points. Fig. 3 shows the temperature profiles

along the y direction at different locations of x = 1/4

and 3/4 for the coarse (31 · 31 in each subdomain) and

fine (51 · 51 in each subdomain) grid solutions when

Ra = 106 and k = 0.1. The solutions using the coarse

and find grids are almost the same. Thus the grid system

of 31 · 31 points in each subdomain is adopted for the

calculation of all the cases considered in the present

study.

A two-step time-split scheme is used to advance the

flow field [12]. First the velocity is advanced from time

level �n� to an intermediate level by solving the advec-

tion–diffusion equation. In the advection–diffusion step,

the non-linear terms are treated explicitly using third-

order Adams–Bashforth scheme. The diffusion terms

are treated implicitly using Crank–Nicholson scheme.

Then a Poisson equation for pressure is solved fully

implicitly. The final divergence-free velocity field at

�n + 1� is obtained with a pressure-correction step. After

obtaining the velocity field, the temperature field is ad-

vanced in a similar manner with third-order Adams–

Bashforth for the advection term and Crank–Nicholson

scheme for the diffusion term. Once the velocity and

temperature fields are obtained, the local, surface-aver-

aged, time-averaged, and time- and surface-averaged

Nusselt number are defined as

Nu ¼ oh
on

����
wall

; Nu ¼ 1

L

Z L

0

NudS;

hNui ¼ 1

tp

Z tp

0

Nudt; hNui ¼ 1

tp

Z tp

0

Nudt ð3Þ
where n is normal to the walls and tp is the period of time

integration. The above quantities are separately com-

puted for the top cold and the bottom hot walls.

The present multi-domain spectral methodology and

the computer code used here have been thoroughly vali-

dated by comparing results with those of de Vahl Davis

[14], House et al. [7] and Le Quere [15] for the case of a

vertical enclosure and with those of Lipps [2] for the case

of a horizontal enclosure. For Rayleigh numbers 103,

104, 105 and 106 the benchmark results on surface-aver-

aged Nusselt number obtained by de Vahl Davis [14] are

1.118, 2.243, 4.519 and 8.800. The corresponding results

obtained with the present code using nine subdomains

with 31 · 31 grid points resolving each subdomain are

respectively, 1.118, 2.246, 4.525 and 8.821, yielding less

than 0.25% difference, even at the highest Rayleigh num-

ber considered. The problem of natural convection in

a vertical enclosure with an interior conducting body

studied by House et al. [7] was also considered

with the present code. The Nusselt number at the hot

wall obtained by House et al. [7] for Ra = 105 with

two different body-to-fluid thermal conductivity ratios

of 0.2 and 5.0 are respectively, 4.324 and 4.624, for a

dimensionless body size of 1/2. The corresponding

results obtained with the present code using nine subdo-

mains with 31 · 31 grid points resolving each subdomain

are 4.324 and 4.631. Again the errors are less than

0.15%. Table 1 show the summary of these benchmark

values.
3. Results and discussion

Fig. 4 shows isotherms and streamlines in the enclo-

sure for different Rayleigh numbers with heat-conduct-

ing body at k = 0.1 and a = 0.001. Fig. 4 also shows

the results for the case when an adiabatic body is present

at the center, in order to compare its results with the

present ones. When Ra = 103, the heat transfer in the

enclosure is predominantly due to conduction. When

k = 0.1, the thermal conductivity of fluid is ten times lar-

ger than that of conducting body and as a result a heat-

conducting body does not conduct well heat through the

body. Thus a heat-conducting body at k = 0.1 acts like

an adiabatic body and the distribution of isotherms at

k = 0.1 and Ra = 103 is similar to that for the case of adi-

abatic body as shown in Fig. 4(a) and in the reference

[11]. The isotherms are satisfied with a top–bottom

reflectional symmetry about the horizontal midplane

(y = 1/2) (see Eq. (4a)). Also along the horizontal direc-

tion reflectional symmetries can be observed about

x = 1/2 (see Eq. (4b)).

Symmetry about y ¼ L=2 :

fu0; v0; h0; x0; y0g  fu;�v; ð1� hÞ; x; L� yg ð4aÞ



Table 1

Comparison of the surface-averaged Nusselt number at the hot wall obtained from the present calculation with that from de Vahl

Devis [14], House et al. [7] and Le Quere [15]

Ra C(=W/L) k Surface-averaged Nusselt number at hot wall

Present study de Vahl Devis [14] House et al. [7] Le Quere [15] Error (%)

103 – – 1.118 1.118 – – 0

104 – – 2.246 2.243 – – 0.13

– – 4.525 4.519 – – 0.13

105 0.5 5.0 4.324 – 4.324 – 0

0.5 0.2 4.631 – 4.624 – 0.15

106 – – 8.821 8.800 – 8.825 0.04

107 – – 16.524 – – 16.523 0.0006
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Fig. 4. Distribution of isotherms and streamline for the conducting body at k = 0.1 and a = 0.001, and for the adiabatic body for

different Rayleigh numbers: (a) Ra = 103; (b) Ra = 104; (c) Ra = 105; (d) Ra = 106.

3312 J.R. Lee, M.Y. Ha / International Journal of Heat and Mass Transfer 48 (2005) 3308–3318



J.R. Lee, M.Y. Ha / International Journal of Heat and Mass Transfer 48 (2005) 3308–3318 3313
Symmetry about x ¼ L=2 :

fu0; v0; h0; x0; y0g  f�u; v; h; L� x; yg ð4bÞ

For the case of pure Rayleigh–Bénard convection with-

out any bodies and obstacles in the enclosure, a convec-

tion caused by the buoyant force starts to occur in the

form of steady roll when a Rayleigh number is larger

than 1708 [1]. When Ra = 104, the fluid flow circulating

in the counter-clockwise direction around a conducting

body is formed in the enclosure and the corresponding

isotherms also circulates in the counter-clockwise direc-

tion. The symmetric shapes about x = 1/2 and y = 1/2 of

isotherms and streamlines are broken and changed them

into diagonally symmetric ones.

If the Rayleigh number is increased to 105, the thick-

ness of the thermal boundary layer formed on the top

and bottom walls becomes thinner due to the flow accel-

eration and the gradient of thermal boundary layer

becomes larger, meaning that the heat transfer rate

increases with increasing Rayleigh number. We can also

observe the formation of secondary vortices at the right

top and left bottom corners of the enclosure. When

Ra 6 105 for k = 0.1, the fluid flow and isotherms reach

a steady state after initial transients for both cases of

conducting and adiabatic bodies. Thus the streamlines

and isotherms shown in Fig. 4(a)–(c) show the fluid flow

and temperature fields after they reach a steady state.

The distribution of streamlines and isotherms formed

in the enclosure for the case of conducting body is sim-

ilar to that for the case of adiabatic body as shown in

Fig. 4(a)–(c). Thus, when Ra 6 105, the values of sur-

face-averaged Nusselt number at the bottom hot wall

for the case of conducting body are almost same as those

for the case of adiabatic body as shown in Table 2.

When the Rayleigh number increases further to 106,

the magnitude of velocity circulating in the counter-

clockwise direction and the size of secondary vortices

formed on the corners also increase further. When

Ra = 106, the fluid flow and heat transfer in the enclo-

sure for the case of conducting body are still steady like

those when Ra 6 105. However, the distribution of fluid

flow and temperature fields for the case of adiabatic

body is time-dependent in a periodically oscillatory fash-
Table 2

Time- and surface-averaged Nusselt number on the hot wall

k Ra

103 104 105 106

0.1 0.81 2.31 3.85 6.30

[Adiabatic [11]] 0.77 2.35 3.8 5.85

1 1.00 2.13 3.88 6.29

[Pure RB [11]] 1.00 2.16 3.91 6.30

50 1.27 1.56 3.94 6.31

[Neutral [11]] 1.29 1.50 3.90 6.19
ion at the same Rayleigh number of 106 [12]. Thus, the

streamlines and isotherms for the case of adiabatic body

shown in Fig. 4(d) are time-averaged ones. In the pres-

ence of conducting body, there exists heat transfer be-

tween the conducting body and surrounding fluid,

causing the flow and heat transfer more stable compared

to the case of adiabatic body without any heat transfer

between the body and surrounding fluid. Thus the

streamlines and isotherms for the case of conducting

body have different distribution compared to those for

the case of adiabatic body as shown in Fig. 4(d). Due

to this difference in the distribution of isotherms when

Ra = 106, the value of surface- and time-averaged Nus-

selt number at the bottom hot wall for the case of con-

ducting body has about 7% difference compared to that

for the case of adiabatic body, unlike little difference

when Ra 6 105, as shown in Table 2. When the Rayleigh

number is 104, 105 and 106 at k = 0.1, the streamlines

and isotherms circulating in the counter-clockwise direc-

tion for the case of conducting body are diagonally sym-

metric and satisfy the following relation.

Diagonal symmetry :

fu0; v0; h0; x0; y0g  f�u;�v; ð1� hÞ; L� x;�yg ð5Þ

If we call the solution shown in Fig. 4, (u1,h1), a new

steady solution (u2,h2) can be obtained by enforcing

one of the broken symmetries, say Eq. (4). Due to diag-

onal symmetry (u2,h2) will automatically satisfy Eq. (4)

as well. Thus there are two stable fixed points and the

phase space splits into two halves and, depending on

where the flow starts, one or the other fixed point is

reached. This alternate steady state solution corresponds

to a large clockwise circulation around the body. Both

of these two possible stable states are reached in any

given simulation depending on the initial starting condi-

tion used in the time marching procedure.

Fig. 5 shows isotherms and streamlines in the enclo-

sure for different Rayleigh numbers with heat-conduct-

ing body at k = 50 and a = 0.05. Fig. 5 also shows the

results for the case when a isothermal neutral body

(h = 0.5) is present at the center, in order to compare

its results with the present ones. When k = 50, a thermal

conductivity of fluid is 50 times less than solid thermal

conductivity. Because a heat-conducting body conducts

well heat through the body, the temperature of conduct-

ing body is almost uniform and close to h = 0.5. Thus

the flow and temperature fields for the case of k = 50

are generally similar to the case of neutral body.

As aforementioned, when k = 0.1, the thermal con-

ductivity of conducting body is very smaller than the

fluid. Thus the temperature in the conducting body is

not uniform and has a large gradient. However, the tem-

perature in the conducting body for the case of k = 50 is

almost uniform due to large thermal conductivity of

conducting body. As a result, when Ra = 103 and 104
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Fig. 5. Distribution of isotherms and streamline for the conducting body at k = 50 and a = 0.05, and for the neutral isothermal body

for different Rayleigh numbers: (a) Ra = 103; (b) Ra = 104; (c) Ra = 105; (d) Ra = 106.
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at which conduction is more dominant heat transfer

mode, the temperature fields for the case of k = 50 have

different distribution from those for the case of k = 0.1.

Especially differences in the inside of and around the

conducting body are large. When the Rayleigh number

increases to 105 and 106, the thermal resistance for con-

duction in the conducting body does not change but the

thermal resistance for convection in the fluid decreases

with increasing convective heat transfer. Thus, when

Ra = 105 and 106, the distribution of isotherms for

k = 50 is similar to that for k = 0.1, except for the slight

difference in and close to the conducting body. The flow

fields for the case of k = 50 are generally similar to those
for the cases of k = 0.1 and neutral body. The flow in the

enclosure circulates in the counter-clockwise direction.

The secondary vortices are formed in the right top and

left bottom corners. When the Rayleigh number in-

creases, the size of secondary vortices also increases

due to increasing magnitude of flow velocity.

Similar to the case of k = 0.1, the isotherms at

Ra = 103 for k = 50 show top–bottom and left–right

reflectional symmetries about the horizontal and vertical

mid-planes and satisfy Eq. (4). The streamlines and iso-

therms circulating in the counter-clockwise direction at

Ra = 104, 105 and 106 for k = 50 are diagonally symmet-

ric and satisfy Eq. (5), similar to the case of k = 0.1. The



J.R. Lee, M.Y. Ha / International Journal of Heat and Mass Transfer 48 (2005) 3308–3318 3315
streamlines and isotherms at Ra = 103–106 for the cases

of k = 0.1, k = 50 and neutral body reach the steady

state after the initial transients, unlike the time-depen-

dent flow and temperature fields at Ra = 106 for the case

of adiabatic body.

If k = 0.1 at Ra = 103, the temperature gradients

within the conducting body are significant as shown in

Fig. 4(a). Thus the isotherms on the bottom hot wall

show the ascending curve when we move from right or

left wall to the center and as a result the temperature

at the center in the lower part of enclosure is larger than

that at the right and left corners. This temperature distri-

bution gives the value less than 1 for the surface-aver-

aged Nusselt number at the bottom hot wall at Ra = 103

for k = 0.1, as shown in Table 2. However, if k is

increased to 50, the temperature in the conducting body

is uniform and close to 0.5. Thus the isotherms on the

bottom hot wall show the descending curve when we

move from right or left wall to the center and as a result

the temperature at the center in the lower part of enclo-

sure is smaller than that at the right and left corners. The

temperature gradients on the hot wall for k = 50 are lar-

ger than those for k = 0.1. Thus the value of surface-

averaged Nusselt number at the bottom hot wall at

Ra = 103 for k = 50 is larger than 1. When the Rayleigh

numer increases to 104, the convection starts to play

some role in heat transfer. The different temperature

distribution in the conducting body for different kmakes

the isotherms for k = 0.1 rotate further in the counter-

clockwise direction, compared to the case of k = 50.

Thus the surface-averaged Nusselt number for k = 50

is less than that for k = 0.1 when Ra = 104, unlike the

increasing surface-averaged Nusselt number with

increasing k when Ra = 103. When the Rayleigh number

increases further to 105 and 106, the fluid flow and heat

transfer are mainly governed by convection and become

less dependent on the temperature distribution in the

conducting body for both cases of k = 0.1 and 50. Thus

the surface-averaged Nusselt numbers for the case of

k = 50 at Ra = 105 and 106 have the similar values to

those for the case of k = 0.1, as shown in Table 2.

Because the fluid flow and temperature fields for the case

of k = 50 at Ra = 103–106 are similar to those for the

case of neutral body, the values of surface-averaged

Nusselt number for k = 50 are close to those for the case

of neutral body.

Fig. 6 shows isotherms and streamlines in the

enclosure for different Rayleigh numbers with heat-

conducting body at k = 1 and a = 1. Fig. 6 also shows

the results for the case of pure Rayleigh–Bénard con-

vection without a body in the horizontal enclosure in

order to compare its results with the present ones.

When k = 1, a thermal conductivity of fluid is equal

to that of fluid. When Ra = 103 for k = 1, the iso-

therms are parallel to the horizontal walls, which are
identical to the pure Rayleigh–Bénard convection

and different from the cases of k = 0.1 and k = 50.

As a result, the surface-averaged Nusselt number on

the bottom hot wall for the case of k = 1 is equal to

that for the case of pure Rayleigh–Bénard convection,

larger than that for k = 0.1 and smaller than that for

k = 50, as shown in Table 2. When the Rayleigh num-

ber increases to 104, the streamlines and isotherms for

k = 1 circulate in the counter-clockwise direction, sim-

ilar to those for the cases of k = 0.1 and k = 50. The

temperature gradients in the conducting body for

k = 1 are smaller than those for k = 0.1 and larger

than those for k = 50. This distribution of isotherms

in the conducting body makes the isotherms for k = 1

circulate in the counter-clockwise direction less than

those for k = 0.1 and more than those for k = 50. As a

result, the temperature gradients and corresponding

surface-averaged Nusselt number on the bottom hot

wall for the case of k = 1 are less than those for

k = 0.1 and larger than those for k = 50. The variation

of surface-averaged Nusselt number on the hot wall for

different values of k when Ra = 104 is opposite to that

when Ra = 103. With increasing k, the surface-aver-

aged Nusselt number on the hot wall increases when

Ra = 103 and decreases when Ra = 104. When the Ray-

leigh number increases further to 105 and 106, the dis-

tribution of streamlines and isotherms for the case of

k = 1 is similar to those for the cases of k = 0.1 and

k = 50. Thus the surface-averaged Nusselt number on

the bottom hot wall for k = 1 is also similar to that

for k = 0.1 and k = 50 when Ra = 105 and 106, as

shown in Table 2. Because the temperature distribution

for k = 1 is generally similar to that for the pure Ray-

leigh–Bénard convection except the central region of

enclosure, the difference in the surface-averaged Nus-

selt number on the hot wall between the case of k = 1

and pure Rayleigh–Bénard convection is little.

Because the fluid flow does not exist or the magnitude

of flow velocity is very small when Ra = 103 and 104, the

predominant mode of heat transfer is conduction and

the temperature distribution in the enclosure depends

strongly on the thermal condition of a body. Thus the

presence of a body with different thermal conditions

such as adiabatic, isothermal and conducting body gives

different values of surface-averaged Nusselt numbers

and heat transfer on the bottom hot wall when

Ra = 103 and 104. However, when the Rayleigh number

increases to 105 and 106, the effect of convection on the

fluid flow and heat transfer in the enclosure increases.

Thus the temperature distribution in the enclosure and

surface-averaged Nusselt number on the bottom hot

wall for all the cases with a body at the center do not de-

pend much on the thermal conditions of a body, except

the case of adiabatic body in which the fluid flow and

heat transfer are time-dependent.
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Fig. 6. Distribution of isotherms and streamline for the conducting body at k = 1 and a = 1, and for the pure Rayleigh–Bénard

convection for different Rayleigh numbers : (a) Ra = 103; (b) Ra = 104; (c) Ra = 105; (d) Ra = 106.
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Fig. 7 shows the distribution of local Nusselt number

along the bottom hot wall for different Rayleigh numbers

and thermal conductivity ratios. When Ra = 103, the lo-

cal Nusselt number is less than 1 when k = 0.1, parallel to

the horizontal axis with a value of 1 when k = 1 and lar-

ger than 1 when k = 50. Because the heat transfer occurs

mainly due to conduction and the isotherms are symmet-

ric about x = 0.5, the local Nusselt number has the max-

imum and minimum values at the central position of

x = 0.5 for both cases of k = 0.1 and k = 50 at the Ray-

leigh number of 103. When the Rayleigh number in-

creases to 104, 105 and 106, the streamlines and

isotherms circulate in the counter-clockwise direction

and the location for the maximum local Nusselt number
moves from the left wall to the center line. When

Ra = 104, the local Nusselt number has a maximum value

at the positions of x1 = 0.25 for k = 0.1, x1 = 0.23 for

k = 1 and x1 = 0.18 for k = 50, respectively. However,

when the Rayleigh number increases to 106, the location

x3 for the maximum local Nusselt number is indepen-

dent of the variation of thermal conductivity ratio and

has a value of x3 = 0.34. This result shows that the fluid

flow and heat transfer at the lower Rayleigh number of

104 are affected by the variation of thermal conductivity

ratio, but those at the higher Rayleigh number of 106 are

almost independent of the thermal conductivity ratio.

The local Nusselt number increases with increasing Ray-

leigh number as shown in Fig. 7.
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Fig. 7. Distribution of the local Nusselt number along the hot

wall for different Rayleigh numbers and thermal conductivity

ratios: (a) k = 0.1; (b) k = 1; (c) k = 50.

J.R. Lee, M.Y. Ha / International Journal of Heat and Mass Transfer 48 (2005) 3308–3318 3317
4. Conclusion

We have investigated natural convection in horizon-

tal layer of fluid with a conducting body in the interior,

using an accurate and efficient Chebyshev spectral collo-

cation approach. A multi-domain methodology was

employed to address the geometric complexity intro-

duced by the internal body. We make a detailed analysis

for the distribution of streamlines, isotherms and Nus-

selt number in order to investigate the effect of the pres-

ence of a conducting body on the fluid flow and heat

transfer in the horizontal enclosure for the Rayleigh

numbers in the range of 103 6 Ra 6 106.

The fluid flow and corresponding heat transfer in the

enclosure for k = 0.1, 1 and 50 are generally similar to

those for the cases of adiabatic and neutral body and

pure Rayleigh–Bénard convection, respectively, except

the central region where the body exists.

When the Rayleigh number is less than 104, the effect

of convection on the fluid flow and corresponding heat

transfer is relatively weak and as a result the Nusselt

number on the bottom hot wall depends on the variation

of thermal conductivity ratio. However, when the Ray-

leigh number is larger than 105, the effect of convection

becomes more dominant than conduction and as a result

the Nusselt number on the bottom hot wall does not de-

pend much on the variation of thermal conductivity

ratio.
Acknowledgement

This work was partially supported by KOSEF.
References

[1] P.G. Drazin, W.H. Reid, Hydrodynamic Stability, Cam-

bridge University Press, 1981, Chapter 2.

[2] F.B. Lipps, Numerical simulation of three-dimensional

Bénard convection in air, J. Fluid Mech. 75 (1976) 113–

148.

[3] S. Balachandar, M.R. Maxey, L. Sirovich, Numerical

simulation of high Rayleigh number convection, J. Sci.

Comput. 4 (1988) 219–236.

[4] G.D. Mallinson, G. de Vahl Davis, Three-dimensional

natural convection in a box: a numerical study, J. Fluid

Mech. 83 (1977) 1–31.

[5] T. Fusegi, J.M. Hyun, K. Kuwahara, B. Farouk, A

numerical study of three-dimensional natural convection in

a differentially heated cubical enclosure, Int. J. Heat Mass

Transfer 34 (1991) 1543–1557.

[6] R.A.W. Henkes, C.J. Hoogendoorn, Scaling of turbulent

natural convection flow in a heated square cavity, ASME

J. Heat Transfer 116 (1994) 400–408.

[7] J.M. House, C. Beckermann, T.F. Smith, Effect of a

centered conducting body on natural convection heat



3318 J.R. Lee, M.Y. Ha / International Journal of Heat and Mass Transfer 48 (2005) 3308–3318
transfer in an enclosure, Numer. Heat Transfer, Part. A 18

(1990) 213–225.

[8] J.Y. Oh, M.Y. Ha, K.C. Kim, Numerical study of heat

transfer and flow of natural convection in an enclosure

with a heat-generating conducting body, Numer. Heat

Transfer, Part. A 31 (1997) 289–303.

[9] M.Y. Ha, M.J. Jung, Y.S. Kim, Numerical study on

transient heat transfer and fluid flow of natural convection

in an enclosure with a heat-generating conducting body,

Numer. Heat Transfer, Part A 35 (1999) 415–433.

[10] M.Y. Ha, M.J. Jung, A numerical study on three-dimen-

sional conjugate heat transfer of natural convection and

conduction in a differentially heated cubic enclosure with a

heat-generating cubic conducting body, Int. J. Heat Mass

Transfer 43 (2000) 4229–4248.

[11] M.Y. Ha, H.S. Yoon, K.S. Yoon, S. Balachandar, I. Kim,

J.R. Lee, H.H. Chun, Two-dimensional and unsteady
natural convection in a horizontal enclosure with a

square body, Numer. Heat Transfer, Part. A 41 (2002)

183–210.

[12] J.R. Lee, M.Y. Ha, S. Balachandar, H.S. Yoon, S.S. Lee,

Natural convection in a horizontal layer of fluid with a

periodic array of square cylinders in the interior, Phys.

Fluids 16 (4) (2004) 1097–1117.

[13] C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang,

Spectral Methods in Fluid Dynamics, Springer Verlag,

New York, 1988.

[14] G. de Vahl Davis, Natural convection of air in a square

cavity: a benchmark numerical solution, Int. J. Numer.

Methods Fluids 3 (1983) 249–264.

[15] P. Le Quere, Accurate solution to the square thermally

driven cavity at high Rayleigh number, Comput. Fluids 20

(1991) 29.


	A numerical study of natural convection in a horizontal enclosure with a conducting body
	Introduction
	Numerical methodology
	Results and discussion
	Conclusion
	Acknowledgement
	References


